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1. Introduction

The standard Lindstedt-Poincaré method is one of the important perturbation techniques
widely used in the study of non-linear oscillations [1-3]. But the method is only for solving
problems with small parameters. It is the small parameter that restricts the applications of the
standard Lindstedt—Poincaré method. To overcome the limitations, some modified Lindstedt—
Poincaré techniques have been proposed in recent years. For example, He [4] proposed a modified
perturbation method (which will be called Method 1), and Hu [5] pointed out that there exists an
“innovative” classical perturbation method (Method 2) which is valid for large parameters.

In this work, the Duffing equation will be treated using the two Lindstedt—Poincaré-type
perturbation methods mentioned above. A comparison of these two methods will be presented.

The Duffing equation [1-3] is

$4+oix+ex’ =0, x(0)=4, x(0)=0, (1)
where overdots denote differentiation with respect to time ¢ and ¢ is a positive parameter. The
solution of Eq. (1) is assumed in the form

x(2) = xo(2) + ex1(0) + Ex2(0) + ---. )
The fundamental frequency ? is given by
w2:w§+8w1+52w2+---, (3)

where the constants w; can be identified by means of no secular terms. Introducing the
substitution T = wt, d/df = wd/dz into Eq. (1), we obtain

¥+ oix +ex* =0, x(0)=4, X(0)=0, (4)

where primes designate differentiation with respect to 7.
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2. Approximate solution by Method 1

Substituting Egs. (2) and (3) into Eq. (4) gives
2.1

(0] + ewy + & wy + )X + ex| +&2xy + o) + wd(xo + exy +ePxy + -

+ e(xg +ex1 + &2xy + )’ = 0.

()

This equation is satisfied by setting the coefficients of the powers of ¢ equal to zero, resulting in

"
Xy +x0 =0,
3
1 X
x//+x1:__x//__0
1 wz 0 wz’
0 0
()} ()] 3
x//_|_x2 — __x//__x//_ —X2X1.
2 270 21 270
@y @y ®p

Solving Eq. (6) and taking into account the initial conditions given in Eq. (4) gives

Xo = A cos wt,

3

322

(cos 3wt — cos wi),

34% A3
807 Xy = 10240 4 (23 cos wt — 24 cos 3wt + cos Swi).
@y

)y = —
Then, the first approximate solution to Eq. (1) is

eA?
= A cos wt + ——— (cos 3wt — cos wi)
32wy

with

N - 2 4 3042
o = o] = /oy + 3e4°.

The second approximate solution becomes
3

A
:Acoswl—k38

cos 3wt — cos wt
207 )

&2 4>

1024 4 (23 cos wt — 24 cos 3wt + cos Swi)

with

, 3 3624°
(}):(,02: \/w%+18A2— m

(6a)

(6b)

(6¢)

(7a)

(7b)

(7c)

(8)

©)

(10)

(11)
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3. Approximate solution by Method 2

Eq. (3) can be rewritten as
a)é = w? — o) — Wy —
Substituting this equation and Eq. (2) into Eq. (4) gives
2.1

a)2(>cO +ex] +ex) + - )+ (@F — sy — 2wy — -+ )(xo + ex1 + 2x0 + -+

+ (x4 ex) + &2xy 4 ---) = 0.

From this equation, we have
!
Xy +x0 =0,
W) X3

/!
X +X1=—5X0——
! w? w?

o)) w1 3

" 2
Xy + X2 ==X +—5X| — —5 XpX].
O) CU w

439

(12)

(13)

(14a)

(14b)

(14¢)

Solving Eq. (14) and taking into account the initial conditions given in Eq. (4), we obtain [5]

Xo = A cos wt,

3
=302 (cos 3wt — cos wt),

344 A3

Wy, = — T Xy = W(cos Swt — cos wi).

Therefore, the first approximate solution to Eq. (1) is

3

eA
= Acoswt + — 072 (cos 3wt — cos wt)

with

_ b _ /2.3 2

The second approximate solution becomes [5]
3 245

A
% (cos 3wt — cos wt) + ——— 0040t (cos Swt — cos wi),

b
X5 = Acoswt +
2 32w

where

1
0=oh= \/ 803 + 664 + \ /64w + 9603eA? + 30241,

(15a)

(15b)

(15¢)

(16)

(17)

(18)

(19)
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4. Comparisons

4.1. Comparison of the fundamental frequencies

The first approximate solution wll’ = of. But the second approximate solution w4 is invalid for
the large values of ¢4? (if ¢4>>(16 + 3\/42)wf = 33.282w}, wf + 3 e4? — 567 A*/w§<0). wh can
give excellent approximate frequencies for both small and large values of ¢4 [5].

4.2. Comparison of the time-dependent oscillatory displacement curves with the exact solutions

Since w4 is not valid when e4% >33.282w3, we will not consider the second approximate solution
x4(7) in the following. In the work to follow, we let w} = 1. The exact periodic solution x.(?)
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Fig. 1. Comparison of the approximate solutions with the exact solution for e =1, 4 = 1.
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Fig. 2. Comparison of the approximate solutions with the exact solution for ¢ = 1, 4 = 10.
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Fig. 3. Comparison of the approximate solutions with the exact solution for ¢ = 10, 4 = 1.
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Fig. 4. Comparison of the approximate solutions with the exact solution for ¢ = 10, 4 = 10.

obtained by integrating Eq. (1), the approximate analytical periodic solutions x{(z), x’l’(t) and
xé’(t) computed by Egs. (8), (16) and (18), respectively, are plotted in Figs. 1-3. Fig. 1 shows that
x{(2), xll’(t) and xlz’(t) are close to x.(f) fore =1, A=1.Butfore=1,4=10and e =10, 4 =1,
Figs. 2 and 3 show that x{(¢) is not acceptable. For large values of ¢42, x.(¢), x?(¢) and x5(¢) are
pictured in Figs. 4-9. Fig. 9 indicates that even when & = 1000 and 4 = 1000, x%(¢) and x5(¢) can
give good approximations, and x5(¢) is more accurate than x?(7).

5. Concluding remarks

(1) For Method 1, the second approximate solution is not better than the first approximate
solution, and Method 1 is invalid for large parameters. Comparing Eqgs. (6) and (7) with the
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Fig. 5. Comparison of the approximate solutions with the exact solution for ¢ = 10, 4 = 100.
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Fig. 6. Comparison of the approximate solutions with the exact solution for ¢ = 100, 4 = 1.

corresponding results obtained by the standard Lindstedt—Poincaré method (for example,
Egs. (2.58)—(2.60), and Egs. (2.63) and (2.64) in Ref. [1]), it follows that Method 1 is identical to
the standard Lindstedt—Poincaré method in nature. It is interesting to note that there are x; and
x{ on the right-hand sides of Eqgs. (6), whereas there are only x( and x; on the right-hand sides of
Eqgs. (14). Obviously, if xo and x; are approximate solutions, then the accuracy of x; and x/ is
worse than that of xy and x;. Perhaps this difference gives one of the reasons Method 1 (or the
standard Lindstedt—Poincaré¢ method) is invalid for larger parameters.
(2) Hu [1] pointed out that maybe using the expansion

w:w0+8w1+82w2+--- (20)
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Fig. 7. Comparison of the approximate solutions with the exact solution for ¢ = 100, 4 = 10.

e=100.A=100

Displacement x

Fig. 8. Comparison of the approximate solutions with the exact solution for ¢ = 100, 4 = 100.

instead of expansion (3) is the reason why the standard classical perturbation method is not able
to provide accurate results when the parameter is large. But in this paper, we see that although
both Methods 1 and 2 use the same expansion (3), only Method 2 works for strongly nonlinear
systems. Method 1 substitutes expansion (3) for w? in Eq. (4), whereas Method 2 substitutes
expansion (3) (or expansion (12)) for @} in Eq. (4), which is the most important difference between
the two methods! It should also be noted that Method 2 works even when the linear part of
restoring force is zero [6].

It therefore appears that the work presented here contributes to explaining why the
“innovative” classical perturbation method (Method 2) works for large parameters.
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Fig. 9. Comparison of the approximate solutions with the exact solution for ¢ = 1000, 4 = 1000.
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