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1. Introduction

The standard Lindstedt–Poincar!e method is one of the important perturbation techniques
widely used in the study of non-linear oscillations [1–3]. But the method is only for solving
problems with small parameters. It is the small parameter that restricts the applications of the
standard Lindstedt–Poincar!e method. To overcome the limitations, some modified Lindstedt–
Poincar!e techniques have been proposed in recent years. For example, He [4] proposed a modified
perturbation method (which will be called Method 1), and Hu [5] pointed out that there exists an
‘‘innovative’’ classical perturbation method (Method 2) which is valid for large parameters.
In this work, the Duffing equation will be treated using the two Lindstedt–Poincar!e-type

perturbation methods mentioned above. A comparison of these two methods will be presented.
The Duffing equation [1–3] is

.x þ o20x þ ex3 ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0; ð1Þ

where overdots denote differentiation with respect to time t and e is a positive parameter. The
solution of Eq. (1) is assumed in the form

xðtÞ ¼ x0ðtÞ þ ex1ðtÞ þ e2x2ðtÞ þ?: ð2Þ

The fundamental frequency o2 is given by

o2 ¼ o20 þ eo1 þ e2o2 þ?; ð3Þ

where the constants oi can be identified by means of no secular terms. Introducing the
substitution t ¼ ot; d=dt ¼ od=dt into Eq. (1), we obtain

o2x00 þ o20x þ ex3 ¼ 0; xð0Þ ¼ A; x0ð0Þ ¼ 0; ð4Þ

where primes designate differentiation with respect to t:
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2. Approximate solution by Method 1

Substituting Eqs. (2) and (3) into Eq. (4) gives

ðo20 þ eo1 þ e2o2 þ?Þðx00
0 þ ex00

1 þ e2x00
2 þ?Þ þ o20ðx0 þ ex1 þ e2x2 þ?Þ

þ eðx0 þ ex1 þ e2x2 þ?Þ3 ¼ 0: ð5Þ

This equation is satisfied by setting the coefficients of the powers of e equal to zero, resulting in

x00
0 þ x0 ¼ 0; ð6aÞ

x00
1 þ x1 ¼ �

o1
o20

x00
0 �

x30
o20

; ð6bÞ

x00
2 þ x2 ¼ �

o2
o20

x00
0 �

o1
o20

x00
1 �

3

o20
x20x1: ð6cÞ

Solving Eq. (6) and taking into account the initial conditions given in Eq. (4) gives

x0 ¼ A cosot; ð7aÞ

o1 ¼ 3
4

A2; x1 ¼
A3

32o20
ðcos 3ot � cosotÞ; ð7bÞ

o2 ¼ �
3A4

128o20
; x2 ¼

A5

1024o40
ð23 cosot � 24 cos 3ot þ cos 5otÞ: ð7cÞ

Then, the first approximate solution to Eq. (1) is

xa
1 ¼ A cosot þ

eA3

32o20
ðcos 3ot � cosotÞ ð8Þ

with

o ¼ oa
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o20 þ

3
4
eA2

q
: ð9Þ

The second approximate solution becomes

xa
2 ¼A cosot þ

eA3

32o20
ðcos 3ot � cosotÞ

þ
e2A5

1024o40
ð23 cosot � 24 cos 3ot þ cos 5otÞ ð10Þ

with

o ¼ oa
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o20 þ

3

4
eA2 �

3e2A4

128o20

s
: ð11Þ
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3. Approximate solution by Method 2

Eq. (3) can be rewritten as

o20 ¼ o2 � eo1 � e2o2 �?: ð12Þ

Substituting this equation and Eq. (2) into Eq. (4) gives

o2ðx00
0 þ ex00

1 þ e2x00
2 þ?Þ þ ðo2 � eo1 � e2o2 �?Þðx0 þ ex1 þ e2x2 þ?Þ

þ eðx0 þ ex1 þ e2x2 þ?Þ3 ¼ 0: ð13Þ

From this equation, we have

x00
0 þ x0 ¼ 0; ð14aÞ

x00
1 þ x1 ¼

o1
o2

x0 �
x30
o2

; ð14bÞ

x00
2 þ x2 ¼

o2
o2

x0 þ
o1
o2

x1 �
3

o2
x20x1: ð14cÞ

Solving Eq. (14) and taking into account the initial conditions given in Eq. (4), we obtain [5]

x0 ¼ A cosot; ð15aÞ

o1 ¼ 3
4

A2; x1 ¼
A3

32o2
ðcos 3ot � cosotÞ; ð15bÞ

o2 ¼ �
3A4

128o2
; x2 ¼

A5

1024o4
ðcos 5ot � cosotÞ: ð15cÞ

Therefore, the first approximate solution to Eq. (1) is

xb
1 ¼ A cosot þ

eA3

32o2
ðcos 3ot � cosotÞ ð16Þ

with

o ¼ ob
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o20 þ

3
4
eA2

q
: ð17Þ

The second approximate solution becomes [5]

xb
2 ¼ A cosot þ

eA3

32o2
ðcos 3ot � cosotÞ þ

e2A5

1024o4
ðcos 5ot � cosotÞ; ð18Þ

where

o ¼ ob
2 ¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8o20 þ 6eA

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64o40 þ 96o

2
0eA

2 þ 30e2A4

qr
: ð19Þ
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4. Comparisons

4.1. Comparison of the fundamental frequencies

The first approximate solution ob
1 ¼ oa

1: But the second approximate solution oa
2 is invalid for

the large values of eA2 (if eA2
Xð16þ 8

3

ffiffiffiffiffi
42

p
Þo20 ¼ 33:282o20; o

2
0 þ

3
4
eA2 � 3

128
e2A4=o20p0Þ: o

b
2 can

give excellent approximate frequencies for both small and large values of eA2 [5].

4.2. Comparison of the time-dependent oscillatory displacement curves with the exact solutions

Since oa
2 is not valid when eA

2
X33:282o20; we will not consider the second approximate solution

xa
2ðtÞ in the following. In the work to follow, we let o

2
0 ¼ 1: The exact periodic solution xeðtÞ
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Fig. 1. Comparison of the approximate solutions with the exact solution for e ¼ 1; A ¼ 1:

Fig. 2. Comparison of the approximate solutions with the exact solution for e ¼ 1; A ¼ 10:
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obtained by integrating Eq. (1), the approximate analytical periodic solutions xa
1ðtÞ; xb

1ðtÞ and
xb
2ðtÞ computed by Eqs. (8), (16) and (18), respectively, are plotted in Figs. 1–3. Fig. 1 shows that

xa
1ðtÞ; xb

1ðtÞ and xb
2ðtÞ are close to xeðtÞ for e ¼ 1; A ¼ 1: But for e ¼ 1; A ¼ 10 and e ¼ 10; A ¼ 1;

Figs. 2 and 3 show that xa
1ðtÞ is not acceptable. For large values of eA

2; xeðtÞ; xb
1ðtÞ and xb

2ðtÞ are
pictured in Figs. 4–9. Fig. 9 indicates that even when e ¼ 1000 and A ¼ 1000; xb

1ðtÞ and xb
2ðtÞ can

give good approximations, and xb
2ðtÞ is more accurate than xb

1ðtÞ:

5. Concluding remarks

(1) For Method 1, the second approximate solution is not better than the first approximate
solution, and Method 1 is invalid for large parameters. Comparing Eqs. (6) and (7) with the
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Fig. 3. Comparison of the approximate solutions with the exact solution for e ¼ 10; A ¼ 1:

Fig. 4. Comparison of the approximate solutions with the exact solution for e ¼ 10; A ¼ 10:
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corresponding results obtained by the standard Lindstedt–Poincar!e method (for example,
Eqs. (2.58)–(2.60), and Eqs. (2.63) and (2.64) in Ref. [1]), it follows that Method 1 is identical to
the standard Lindstedt–Poincar!e method in nature. It is interesting to note that there are x00

0 and
x00
1 on the right-hand sides of Eqs. (6), whereas there are only x0 and x1 on the right-hand sides of
Eqs. (14). Obviously, if x0 and x1 are approximate solutions, then the accuracy of x00

0 and x00
1 is

worse than that of x0 and x1: Perhaps this difference gives one of the reasons Method 1 (or the
standard Lindstedt–Poincar!e method) is invalid for larger parameters.
(2) Hu [1] pointed out that maybe using the expansion

o ¼ o0 þ eo1 þ e2o2 þ? ð20Þ
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Fig. 5. Comparison of the approximate solutions with the exact solution for e ¼ 10; A ¼ 100:

Fig. 6. Comparison of the approximate solutions with the exact solution for e ¼ 100; A ¼ 1:
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instead of expansion (3) is the reason why the standard classical perturbation method is not able
to provide accurate results when the parameter is large. But in this paper, we see that although
both Methods 1 and 2 use the same expansion (3), only Method 2 works for strongly nonlinear
systems. Method 1 substitutes expansion (3) for o2 in Eq. (4), whereas Method 2 substitutes
expansion (3) (or expansion (12)) for o20 in Eq. (4), which is the most important difference between
the two methods! It should also be noted that Method 2 works even when the linear part of
restoring force is zero [6].
It therefore appears that the work presented here contributes to explaining why the

‘‘innovative’’ classical perturbation method (Method 2) works for large parameters.
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Fig. 7. Comparison of the approximate solutions with the exact solution for e ¼ 100; A ¼ 10:

Fig. 8. Comparison of the approximate solutions with the exact solution for e ¼ 100; A ¼ 100:
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Fig. 9. Comparison of the approximate solutions with the exact solution for e ¼ 1000; A ¼ 1000:
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